
Arnd Hartmanns

Formal Approaches to Decision-Making under Uncertainty

Formal Approaches to
Decision-Making under Uncertainty

Arnd Hartmanns
Formal Methods and Tools

RIO 2023 SUMMER SCHOOL, RIO CUARTO, FEBRUARY 2023

Lecture 4-1: Dealing with Large MDPs



Example from ML: Atari games

States: all possible screen images

Actions: joystick movement, button

Reward: winning game points

Very Large MDPs

128 colors(210 × 160 pixels) =

> 1070802 states

reinforcement learning instead of model checking
using deep neural network as function approximators

→ get good strategy, but lose all optimality guarantees



Q-Learning

Large MDP given implicitly, e.g. via interface

– 𝑖𝑛𝑖𝑡() → initial state

– 𝑎𝑐𝑡𝑠(𝑠) → actions of state 𝑠

– 𝑠𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑎) → randomly select successor 𝑠′ and get reward 𝑟

– 𝑡𝑒𝑟𝑚(𝑠) → is 𝑠 a goal or 𝑆0 state?

but not

– 𝑑𝑖𝑠𝑡𝑟(𝑠, 𝑎) → get full distribution info for action 𝑎



Q-Learning

Model checking algorithms:

maintain vectors 𝑥 𝑠 or 𝑥𝑖 𝑠

Q-learning:

maintain function 𝑄: 𝑆 × 𝐴 → ℝ

with 𝑄 𝑠, 𝑎 indicating the "quality" of action 𝑎 from 𝑠
– i.e. an approx. of the goal probability or expected reward 

do simulation runs up to goal or 𝑆0 state,
updating the 𝑄-function with
the newly found rewards as you go



Q-Learning

Algorithm for one episode (simulation run):

1. 𝑠 ≔ 𝑖𝑛𝑖𝑡()

2. with probability 𝜖, select uniformly random 𝑎 from 𝑎𝑐𝑡𝑠(𝑠);

with probability 1 − 𝜖, select 𝑎 ≔ arg max𝑎′∈𝑎𝑐𝑡𝑠 𝑠 𝑄 𝑠, 𝑎′

3. 𝑟, 𝑠′ ≔ 𝑠𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑎)

4. 𝑄 𝑠, 𝑎 ≔ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max𝑎′∈𝑎𝑐𝑡𝑠 𝑠′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

5. 𝑠 ≔ 𝑠′

6. if ¬𝑡𝑒𝑟𝑚 𝑠′ then go to 2



Q-Learning

Q-learning algorithm:

1. Perform 𝑛 learning episodes

2. Return max𝑎∈𝑎𝑐𝑡𝑠 𝑠𝐼 𝑄 𝑠𝐼 , 𝑎 as approx. for Rmax ⋄ 𝐺

and 𝒮max = 𝑠 ↦ arg max𝑎∈𝑎𝑐𝑡𝑠 𝑠 𝑄 𝑠, 𝑎 as optimal scheduler

Fact: lim
𝑛→∞

max𝑎∈𝑎𝑐𝑡𝑠 𝑠𝐼 𝑄 𝑠𝐼 , 𝑎 = Rmax ⋄ 𝐺

But when to stop?



SMC vs. PMC vs. Learning

Memory usage Runtime

Statistical
Model Checking

Probabilistic
Model Checking

Reinforcement
Learning (via
Q-learning)



Deep Learning

Neural networks
are function approximators.

+ fixed memory usage independent of MDP size

– no more lim𝑛→∞ convergence,

learning behaviour very unpredictable

store 𝑄-function
in (deep) neural network



SMC for MDPs

What about SMC for MDPs?

→ LSS: lightweight scheduler sampling

𝑎 ≔ ℋ 𝜎. 𝑠 mod 𝑎𝑐𝑡𝑠 𝑠 -th element of 𝑎𝑐𝑡𝑠 𝑠

+ O(1) memory usage like original SMC

– distance from best scheduler found to optimal scheduler unknown

nondeterminism: must
optimise, not estimate

Perform SMC for 𝑀 randomly
chosen schedulers, return max/min

Identify scheduler by
single integer 𝜎


	Slide 1: Formal Approaches to Decision-Making under Uncertainty
	Slide 2: Very Large MDPs
	Slide 3: Q-Learning
	Slide 4: Q-Learning
	Slide 5: Q-Learning
	Slide 6: Q-Learning
	Slide 7: SMC vs. PMC vs. Learning
	Slide 8: Deep Learning
	Slide 9: SMC for MDPs

