Formal Approaches to Decision-Making under Uncertainty

Lecture 3-2: Algorithms for MDPs

Arnd Hartmanns

Formal Methods and Tools UNIVERSITY OF TWENTE

Markov Decision Processes

Recall MDPs:

Value Iteration

Adapt value iteration to MDP and $P_{opt}(\diamond^{\leq b} G)$: 1. Make states in G absorbing.

2. Iterate:

$$\begin{aligned} x_0[s] &= 1 \text{ if } s \in G \text{ else } 0 \\ x_i[s] &= opt_{\substack{a \\ s \to \mu}} \sum_{s'} \mu(s') \cdot x_{i-1}[s'] \end{aligned}$$

 $T: S \to 2^{A \times \text{Dist}(S)}$ $\langle S, A, T, S_I \rangle$

Value Iteration

Also for MDP: Fact 1: $\lim_{i \to \infty} x_i[s] = P_{opt}(\diamond G)$ from s <u> Cisk</u> Taxi Fact 2: the vector \boldsymbol{x} (where $\boldsymbol{x}[s] = P_{opt}(\diamond G)$ from s) is the least fixed point of the Bellman operator $x_i[s] = 1 \text{ if } s \in G \text{ else } opt_{s \to u} \sum_{s'} \mu(s') \cdot x_{i-1}[s']$

*۵.*۹

0.1

0.5

UNRCEDE

 \rightarrow unbounded VI: same convergence problem as for DTMC \rightarrow fixed point: unique if no end components

Value Iteration

Adaptation to $R_{opt}(\diamond G)$ just like for DTMC:

1. Precompute S_1 states where $P_{\overline{opt}}(\diamond G) = 1$ with $\overline{\max} = \min$ and $\overline{\min} = \max$

2. If $s_I \notin S_1$: return ∞ ; otherwise, iterate: $x_0[s] = 0$ if $s \in S_1$ else ∞ $x_i[s] = 0$ if $s \in G$ else $opt_{s \to \mu} \sum_{s'} \mu(s, s') \cdot (R(s, \langle a, \mu \rangle, s') + x_{i-1}[s])$

Example:

Exercise V

- For the MDP below,
- a) use value iteration to compute P_{max}(*^{≤3} {s₃}) and give the corresponding optimal (step-positional) scheduler;
 b) use value iteration to compute R_{min}(* {s₄}) and give the corresponding optimal (memoryless) scheduler.

Policy Iteration

Policy iteration (PI) or Howard's algorithm

- 1. Pick some scheduler \mathcal{S}
- Compute vector *x* where x[s] = P_{opt}(◊ G) from s for M|_S
 Update scheduler where it is sub-optimal: S'(s) := arg opt a Simple Simpl

 \rightarrow How to implement step 2?

...and analogously for expected rewards.

Linear Programming

Linear programming (LP)

given matrix. The function whose value is to be maximized or minimized ($\mathbf{x} \mapsto \mathbf{c}^T \mathbf{x}$ in this case) is called the

and the arrow indicates the direction in

Linear Programming

Many commercial and open-source LP solvers exist:

solver	version	license	$\mathrm{exact}/\mathrm{fp}$	parallel	algorithms	mcsta	Storm
CPLEX ³	22.10	academic	fp	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
COPT ⁴	5.0.5	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
Gurobi 24	9.5	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	yes
GLPK ⁵	4.65	GPL	$_{\mathrm{fp}}$	no	$\operatorname{intr} + \operatorname{simplex}$	no	yes
Glop ⁶	9.4.1874	Apache	$_{\mathrm{fp}}$	no	simplex only	yes	no
HiGHS ⁷	1.2.2	MIT	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
lp_solve ⁸	5.5.2.11	LGPL	fp	no	simplex only	yes	no
Mosek ⁹	10.0	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
SoPlex 23	6.0.1	academic	both	no	simplex only	no	yes
Z3 40	4.8.13	MIT	exact	no	simplex only	no	yes

Table 2: Available LP solvers ("intr" = interior point)

Linear Programming

Encode the MDP transition constraints as a linear program: find a vector $\mathbf{x} = (x[s])_{s \in S \setminus G}$ with $\forall s \in S \setminus G: 0 \le x_s \le 1$ that minimises $\sum_{s \in S \setminus G} x[s]$ subject to $x[s] \ge \sum_{s' \in S \setminus G} \mu(s') \cdot x[s'] + \sum_{s_g \in G} \mu(s_g)$ for all $s \in S \setminus G$, $s \xrightarrow{a} \mu$ L L L'minimise L L max over the transitions х Find a vector $\mathbf{c}^T \mathbf{x}$ that maximizes $Ax \leq b$ subject to $\mathbf{x} \ge \mathbf{0}.$ tions. a Er. 6 fr. c Erons. andand analogously for min and expected rewards.

Exercise VI

- For the MDP below,
- a) use policy iteration to compute P_{max}(◊^{≤3} {s₃}),
 documenting the intermediate schedulers that you evaluate, and
 b) give the linear program for the same problem.

Model Checking Algorithms

Complexity:

- VI: exponential
- PI: exponential

Table 2: Available LP solvers ("intr" = interior point)

solver	version	license	$\mathrm{exact}/\mathrm{fp}$	parallel	algorithms	mcsta	Storm
CPLEX ³	22.10	academic	fp	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
COPT ⁴	5.0.5	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
Gurobi [24]	9.5	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	yes
GLPK ⁵	4.65	GPL	$_{\mathrm{fp}}$	no	$\operatorname{intr} + \operatorname{simplex}$	no	yes
Glop ⁶	9.4.1874	Apache	$_{\mathrm{fp}}$	no	simplex only	yes	no
HiGHS ⁷	1.2.2	MIT	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
lp_solve ⁸	5.5.2.11	LGPL	fp	no	simplex only	yes	no
Mosek ⁹	10.0	academic	$_{\mathrm{fp}}$	yes	$\operatorname{intr} + \operatorname{simplex}$	yes	no
SoPlex [23]	6.0.1	academic	both	no	simplex only	no	yes
Z3 40	4.8.13	MIT	exact	no	simplex only	no	yes

LP: exponential with simplex algorithm polynomial with interior-point/barrier methods

Practical performance:

- VI: usually fastest
- PI: good
- LP: depends on solver ranges from quite slow to like PI (Gurobi and COPT currently best)

Model Checking Algorithms

Practical performance:

- VI: usually fastest
- PI: good

LP: depends on solver – ranges from quite slow to like PI (Gurobi and COPT currently best)

Model Checking Algorithms

Practical performance:

- VI: usually fastest
- PI: good

LP: depends on solver – ranges from quite slow to like PI (Gurobi and COPT currently best)

Exact and Sound Algorithms

Let $v = P_{opt}(\diamond G)$ be the true, unknown value of interest. Exact algorithms:

Compute exact result \bar{v} so that $\bar{v} = v$; need arbitrary-precision rational numbers

Sound algorithms:

Obtain approximate result \bar{v} with $|\bar{v} - v| \le \epsilon$ or $|\bar{v} - v|/v \le \epsilon$

(absolute error) (relative error)

using finite-precision floating-point arithmetic

Exact and Sound Algorithms

Non-exact implementations:

- VI: unsound lack of (efficient) stopping criterion
- II: sound modulo floating-point errors
- PI: unsound unless precise even if DTMC solved ϵ -correctly
- LP: unsound non-exact solvers give no guarantees

Floating-point computations: finite precision → rounding errors at every step

Exact (arbitrary-precision rational) implementations: slow, do not scale to large models

Homework

Second step to pass this course:

Try to solve Exercises I to VI from the two slide sets of today, and send your solutions (photos or scans) to Arnd by email. *Try to get as far as you can*.

a.hartmanns@utwente.nl