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Markov Decision Processes

Recall MDPs:




Value lteration

Adapt value iteration to MDP and P, (¢=? G):
1. Make states in G absorbing.

2. lterate:
Xols] =1its € G else 0

xils] = opt_a X p(s’) - x;_q]s’]
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Value lteration

Also tor MDP:
Fact 1: lim x;[s] = Pype (0 G) from s —
L—CO

Fact 2: the vector x (where x[s] = Pyt (¢ G) from s) 0

is the least fixed point ot the Bellman operator
xi[s] =1its € Gelseopt a Y. u(s") - x;_1[s’]

S—U

— unbounded VI: same convergence problem as for DTMC
— tixed point: unique it no end components



Value lteration

Adaptation to Rype (¢ G) just like for DTMC:

1. Precompute S states where Pgzz(e G) = 1
with max = min and min = max

2.1t s; & Sq: return oo; otherwise, iterate:
Xols] = 0its € S; else o
x;[s] =0its € G else
opt a N p(s,s’) - (R(s,{(a,u),s") + x;_1[s])

S—U

Example:



Exercise V

For the MDP below,

a) use value iteration -
and give the corres

b) use value iteration t

and give the corres

o compute Ppay(0=3 {s3})
ponding optimal (step-positional) scheduler;

o compute Rpin(¢ {s4})

oonding optimal (memoryless) scheduler.




Policy lteration

Policy iteration (Pl) or Howard's algorithm
1. Pick some scheduler §
2. Compute vector x where x[s] = Py, (o G) from s for M|

3. Update scheduler where it is sub-optimal:
S'(s) = argopt_a_ Yo u(s") - x[s']

S—U

4. 18" #8,thenset§ =8 and go to 2.
— How to implement step 2¢

...and analogously for expected rewards.



Linear Programming

Linear programming (LP)

Linear programming % 48 languages v
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Linear Programming

Many commercial and open-source LP solvers exist:

Table 2: Available LP solvers (“intr” = interior point)

solver version license exact/fp parallel  algorithms  mcsta Storm
CPLE 22.10  academic fp yes intr + simplex  yes no
COP i 5.0.5  academic tp yes intr + simplex  yes no
Gurobi [24] 9.5 academic fp yes intr + simplex  yes yes
GLP 1 4.65 GPL fp no intr + simplex  no yes
Glo -ﬁ 9.4.1874 Apache fp no simplex only  yes no
HiGH 1.2.2  MIT fp yes intr + simplex  yes no
Ip_solv 5.5.2.11 LGPL fp no simplex only  yes no
Mose 10.0 academic fp yes intr + simplex  yes 10
SoPlex |23] 6.0.1 academic  both no simplex only no yes
Z3 40| 4.8.13 MIT exact no simplex only no yes




Linear Programming

Encode t
finc

ne MDP transition constraints as a linear program:
a vector x = (x[sDses\g With Vs € 5\ G: 0 = x; = 1
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Exercise VI

For the MDP below,

a) use policy iteration to compute Pmax(oS3 {53}),
documenting the intermediate schedulers that you evaluate, and

b) give the linear program tor the same problem.




Model Checking Algorithms

Table 2: Available LP solvers (“intr” = interior point)

C | . o solver version license exact/fp parallel  algorithms  mcsta Stor
O I I l p eXI fy o CPLE < 22.10  academic fp yes intr +simplex  yes no
COPT 5.0.5  academic fp yes intr + simplex  yes no

Gurobi |24] 9.5 academic fp yes intr 4 simplex  yes yes

o * GLP@ 4.65 GPL fp intr + simplex yes

. eX p O n e n I O Glopi 9.4.1874 Apache fp simplex only y o

HiGHSﬁ 1.2.2  MIT fp yes intr +simplex  yes no

Ip_solveﬁ 5.5.2.11 LGPL fp simplex only  yes no

. Moselﬂ 10.0 academic fp yes intr + simplex  yes no

P | L eX p O n e n '|' I O | SoPlex [23]  6.0.1  academic  both no simplex only no yes

. Z3 40| 48.13 MIT exact no simplex only  no yes

LP: exponential with simplex algorithm
polynomial with interior-point/barrier methods

Practical performance:
VI: usually tastest
Pl: good

LP: depends on solver — ranges from quite slow to like Pl
(Gurobi and COPT currently best)



Model Checking Algorithms
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Practical performance:

VI: usually tastest
Pl: good

LP: depends on solver — ranges from quite slow to like Pl
(Gurobi and COPT currently best)



Model Checking Algorithms
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Practical performance:

VI: usually tastest
Pl: good
LP: depends on solver — ranges from quite slow to like Pl
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(Gurobi and COPT currently best)



Exact and Sound Algorithms

Let v = P, (¢ G) be the true, unknown value of interest.
Exact algorithms:
Compute exact result ¥ so that 7 = v;

need arbitrary-precision rational numbers

Sound algorithms:
Obtain approximate result v
with [ —v| <€ (absolute error)
or |[v—v|/v<e (relative error)
using finite-precision tloating-point arithmetic




Exact and Sound Algorithms

Non-exact implementations:
VI: unsound — lack ot (efficient) stopping criterion
I: sound — modulo tloating-point errors
P|: unsound unless precise — even it DTMC solved e-correctly

|P: unsound — non-exact solvers give no guarantees

Floating-point computations:
finite precision — rounding errors at every step

Exact (arbitrary-precision rational) implementations:
slow, do not scale to large models



Homework

Second step to pass this course:
Try to solve Exercises | to VI from the two slide sets of today,
and send your solutions (photos or scans) to Arnd by email.
Iry to get as far as you can.

a.hartmanns@utwente.nl
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