Formal Approaches to
Decision-Making under Uncertainty

Lecture 3-2: Algorithms tor MDPs

Arnd Hartmanns
Formal Methods and Tools

UNIVERSITY OF TWENTE

Markov Decision Processes

Recall MDPs:

Value lteration

Adapt value iteration to MDP and P, (¢=? G):
1. Make states in G absorbing.

2. lterate:
Xols] =1its € G else 0

xils] = opt_a X p(s’) - x;_q]s’]

S—U

T § > ZAXDist(S)
(S)A; T)SI)

D
O 0 0.S 05 0.S¢ 055
. ‘LO“Q&S Jes D 0.1 0.1 0ST 0ss OSYS
62 8y oS 05 S OS 0SS re-
1 1 1 A /] /l
V)

0 0 O O O

Value lteration

Also tor MDP:
Fact 1: lim x;[s] = Pype (0 G) from s —
L—CO

Fact 2: the vector x (where x[s] = Pyt (¢ G) from s) 0

is the least fixed point ot the Bellman operator
xi[s] =1its € Gelseopt a Y. u(s") - x;_1[s’]

S—U

— unbounded VI: same convergence problem as for DTMC
— tixed point: unique it no end components

Value lteration

Adaptation to Rype (¢ G) just like for DTMC:

1. Precompute S states where Pgzz(e G) = 1
with max = min and min = max

2.1t s; & Sq: return oo; otherwise, iterate:
Xols] = 0its € S; else o
x;[s] =0its € G else
opt a N p(s,s’) - (R(s,{(a,u),s") + x;_1[s])

S—U

Example:

Exercise V

For the MDP below,

a) use value iteration -
and give the corres

b) use value iteration t

and give the corres

o compute Ppay(0=3 {s3})
ponding optimal (step-positional) scheduler;

o compute Rpin(¢ {s4})

oonding optimal (memoryless) scheduler.

Policy lteration

Policy iteration (Pl) or Howard's algorithm
1. Pick some scheduler §
2. Compute vector x where x[s] = Py, (o G) from s for M|

3. Update scheduler where it is sub-optimal:
S'(s) = argopt_a_ Yo u(s") - x[s']

S—U

4. 18" #8,thenset§ =8 and go to 2.
— How to implement step 2¢

...and analogously for expected rewards.

Linear Programming

Linear programming (LP)

Linear programming % 48 languages v

Read Edit View history

Find a vector X
T padcast programming.

tha,t maXimizeS c x a method to achieve the best outcome (such as

equirements are represented by linear

Subj eCt tO Ax S b tical programming (also known as mathematical

ation of a linear objective function, subject to
and x > 0 . nis a convey polytope, which is a set defined as
fined by a linear inequality. Its objective function
5 & TEavaloEw STs Tear IO no T aenen o ois poryreupai. A linear programming algorithm finds a point
in the polytope where this function has thé smallest (or largest) value if such a point exists.

(near programs are problems that carybe expressed prcanonical form as

A pictarial representation of a =
Find a vector x simple linear program with two
that maximizes ch variables and six inequalities. The set
) ~ of feasible solutions is depicted in
suh]e'ct to Ax = b yvellow and forms a polygon, a
and X = 0. Z-dimensional polytope. The optimum

_ _ _ _ T of the linear cost function is where the
Here the components of X are the variables to be determined, ¢ and b are given vectors (with ¢ indicating that red line intersects the polygon. The red
the coefficients of ¢ are used as a single-row matrix for the purpose of forming the matrix product), and A is a line is a level set ofthe cost function,

Aiven matiy The finctinn whaee valie ic e be mavimized ar minimized e s o8« in thic faeel ic ralled Hhe and the arrow indicates the direction in

Linear Programming

Many commercial and open-source LP solvers exist:

Table 2: Available LP solvers (“intr” = interior point)

solver version license exact/fp parallel algorithms mcsta Storm
CPLE 22.10 academic fp yes intr + simplex yes no
COP i 5.0.5 academic tp yes intr + simplex yes no
Gurobi [24] 9.5 academic fp yes intr + simplex yes yes
GLP 1 4.65 GPL fp no intr + simplex no yes
Glo -ﬁ 9.4.1874 Apache fp no simplex only yes no
HiGH 1.2.2 MIT fp yes intr + simplex yes no
Ip_solv 5.5.2.11 LGPL fp no simplex only yes no
Mose 10.0 academic fp yes intr + simplex yes 10
SoPlex |23] 6.0.1 academic both no simplex only no yes
Z3 40| 4.8.13 MIT exact no simplex only no yes

Linear Programming

Encode t
finc

ne MDP transition constraints as a linear program:
a vector x = (x[sDses\g With Vs € 5\ G: 0 = x; = 1

that
subj

SES\G x|s]

lect to

x[S@ZS’Es\G u(s’) - x[s'] + Zs €G .U(Sg)

forall s € S\ G, S—>,u

r N L Ly
,l\\ LY 7 — zlix ﬁ:zdwws
2 12 =

V'-L«aus.q, €4 L {rcC \é(a ne-
...and analogously for min and expected rewards.

Exercise VI

For the MDP below,

a) use policy iteration to compute Pmax(oS3 {53}),
documenting the intermediate schedulers that you evaluate, and

b) give the linear program tor the same problem.

Model Checking Algorithms

Table 2: Available LP solvers (“intr” = interior point)

C | . o solver version license exact/fp parallel algorithms mcsta Stor
O I I l p eXI fy o CPLE < 22.10 academic fp yes intr +simplex yes no
COPT 5.0.5 academic fp yes intr + simplex yes no

Gurobi |24] 9.5 academic fp yes intr 4 simplex yes yes

o * GLP@ 4.65 GPL fp intr + simplex yes

. eX p O n e n I O Glopi 9.4.1874 Apache fp simplex only y o

HiGHSﬁ 1.2.2 MIT fp yes intr +simplex yes no

Ip_solveﬁ 5.5.2.11 LGPL fp simplex only yes no

. Moselﬂ 10.0 academic fp yes intr + simplex yes no

P | L eX p O n e n '|' I O | SoPlex [23] 6.0.1 academic both no simplex only no yes

. Z3 40| 48.13 MIT exact no simplex only no yes

LP: exponential with simplex algorithm
polynomial with interior-point/barrier methods

Practical performance:
VI: usually tastest
Pl: good

LP: depends on solver — ranges from quite slow to like Pl
(Gurobi and COPT currently best)

Model Checking Algorithms

A == \'I (.]"
_ OVI ; I/ ¢ LS>
=20 | —P1 | \ /7 b/}/) '3 bo.l_\\- 5&'0\4@4‘ bQ“C\'\Mq‘\Q GO
ViR - e torks A0S ifgedd W Loy recle-r)
1 +|== VI2LP - r,__:. = : —> pr Q o(bY \/U&\J“\ Q
> el ‘- " ?Q‘f SRS (q(sot‘c‘v"\"\s

150 200 250 300 350

: Nt c.umwbd“"'e’(‘
Practical performance:

VI: usually tastest
Pl: good

LP: depends on solver — ranges from quite slow to like Pl
(Gurobi and COPT currently best)

Model Checking Algorithms

100

— V]
OVI
w— P
e
w— VI2PI

|| VI2LP g™

Practical performance:

VI: usually tastest
Pl: good
LP: depends on solver — ranges from quite slow to like Pl

1,000

100

10

0.1

w—\15
w—\1m

COPTm

CPLEXm
wes Glop,,,
— GLPKS
mes Gurobis

= Gurobim
w— HiGHS,,

=== |p_solve

s Mosekm

w— SoPlexs

m— SoPlex;
Z32

0

50

100

150 200

250

300

350

(Gurobi and COPT currently best)

Exact and Sound Algorithms

Let v = P, (¢ G) be the true, unknown value of interest.
Exact algorithms:
Compute exact result ¥ so that 7 = v;

need arbitrary-precision rational numbers

Sound algorithms:
Obtain approximate result v
with [—v| <€ (absolute error)
or |[v—v|/v<e (relative error)
using finite-precision tloating-point arithmetic

Exact and Sound Algorithms

Non-exact implementations:
VI: unsound — lack ot (efficient) stopping criterion
I: sound — modulo tloating-point errors
P|: unsound unless precise — even it DTMC solved e-correctly

|P: unsound — non-exact solvers give no guarantees

Floating-point computations:
finite precision — rounding errors at every step

Exact (arbitrary-precision rational) implementations:
slow, do not scale to large models

Homework

Second step to pass this course:
Try to solve Exercises | to VI from the two slide sets of today,
and send your solutions (photos or scans) to Arnd by email.
Iry to get as far as you can.

a.hartmanns@utwente.nl

	Slide 1: Formal Approaches to Decision-Making under Uncertainty
	Slide 2: Markov Decision Processes
	Slide 3: Value Iteration
	Slide 4: Value Iteration
	Slide 5: Value Iteration
	Slide 6: Exercise V
	Slide 7: Policy Iteration
	Slide 8: Linear Programming
	Slide 9: Linear Programming
	Slide 10: Linear Programming
	Slide 11: Exercise VI
	Slide 12: Model Checking Algorithms
	Slide 13: Model Checking Algorithms
	Slide 14: Model Checking Algorithms
	Slide 15: Exact and Sound Algorithms
	Slide 16: Exact and Sound Algorithms
	Slide 17: Homework

