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Reachability Probabilities

G = SUNRS
The probability o reach a goal state in G € S (e
P(e G) or P(o=P () ek

is now easily detined as
P(o G) = Pyy({syg Sy ... € Paths(M) | 3i:s; € G})
P(o )= 05-05 + 05-04+05-03-0505+... AQfewdos

and P(OSb G) = Py;({sg s1 ... € Paths(M) | 3i < b:s; € G})



DTMC Reachability

DTMC (S, T, s;)
— want to compute P(¢=? G) and P(¢ G)

Preprocessing:
1. Make all states in G absorbing.

2. Compute state set S
where P(o G) froms = 0

— graph reachability of G

Example: G = {3}
So =14}




DTMC Reachability

DTMC (S, T, s;) with probability matrix P
— want to compute P(o=P )

Let x;[s] & P(o=! G) from s.

Then:
Xols] =1its € Gelse

xi[s] =X T(s,s") - x;_q1[s’}

— can formulate as matrix-vector multiplications:
x; = P'x,




DTMC Reachability

DTMC (S, T, s;) with probability matrix P
— want to compute P(¢ @)

Let x[s] & P(¢ G) froms and S, € S\ (S, U G).

Then:

x[s]=1its€G p—<-
x[s] =0its €S,

x|s] =2T(s,s") - x[s]its €S,

— solve linear equation system with |S| variables




DTMC Reachability

DTMC (S, T, s;) with probability matrix P
— want to compute P(¢ @)

Let x[s] & P(¢ G) froms and S, € S\ (S, U G).

Then, it s; € S»:
X[s] = Ly, T(s,s") - xls] p (
+ s ec T(s,s4)

— solve linear equation system x = Ax+ b

where A = (P(s,s")) and b are the one-step pr. to G

s,s'€S,



DTMC Reachability

DTMC (S, T, s;) with probability matrix P
— want to compute P(¢ @)

Solve linear equation system x = Ax + b

1. Direct methods:

Gaussian elimination, p—
L/U decomposition, ...

2. lterative methods:
Power, Jacobi, Gauss-Seidel, ...

— iterative methods preterred due to scalability — but: inexact results



Exercise |

Compute P(o {3 }) for this DTMC by

setting up and solving the linear equation system.




State Elimination

Graphical variant of solving the linear equation system:

eliminate states one-by-one — the state elimination method
@y s Q) Eliminale 2.
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Exercise lla

Use state elimination to check the correctness of the Knuth-Yao die:




Exercise b (BONUS)

Extend the state elimination scheme with rewards:
maintain the expected acc. reward of passing through state t
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(hint: it’s all about geometric series)



Value lteration

Qur P(¢=P @) algorithm —
Xols] =1its € GelseO

xils] = 5, T(s,s") - xi_ys]
— is also known as value iteration:
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Value lteration

We have

lim x;[s| = x|s]

l—)OO

— iterative method to approximate P(o G)

Q: When to stop?

A: Stop when Vs: |x;[s] — x;_1[s]| < (absolute error)
|xils]—x;_1[s]|

xils]

or when Vs: <e€ (relative error)

Problem: absolute/relative error of < € at step i

does not guarantee |x[s] — x;[s]| < € (or relative variant)
— value iteration for P(¢ G) is unsound!



Interval iteration

Value iteration:
approximate from below

Interval iteration:

approximate from below and above x;




Value lteration

Adaptation to R(¢ G) is easy:
1. Precompute S, states where P(¢ G) =1
2.1t s; & S;: return oo; otherwise, iterate:

Xols] = 0its € S; else o
xi[s] =0its € Gelse 27 T(s,s") - (R(s,s") + x;_1[s])



Exercise |l

Run value iteration tor R(¢ {3,4}) on this DTMC
with an absolute-error € = 1.2 stopping criterion
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Probabilistic Model Checking
Probabilistic model checking (PMC)

model properties
I requires an in-memory representation
/' (exhaustive) of the entire DTMC — states and
f § el fheCke" | probabilistic transition relation
/I ~ state space . .
' exploration to solve the linear equation system,
o m ; perform value iteration, ...
\ analysis |
' (e.g.SCC detection,
. . value iteration, ...)
counter- \
example "« % l

e results

X/



Statistical Model Checking
Fesineg devel Statistical model checking (SMC)

model  of confidence =~ properties e Carlo

\|
~ LT Two steps: " mulation

. statistical |
| T0Ue cuscker 1. Random path generation:
| | .
trace generation _ 5 outcome In {0,1} of gevery pOTh
0-0-0-0"0 | = binomial random variable X;
\QO/O—O oy | sample mean X = Z{-‘:lXi [k is
more . .
| /traces unbiased estimator tor P(¢ G)
statistical _ -~ needed
analysis § - :
l - 2. Statistical evaluation of outcomes
| to ensure correct results up to
results

XD error + € with confidence 1 — §



SMC: Statistical Evaluation

For P(¢ G): can use the Okamoto bound, which states that
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Given two out ot k, €, §, can compute the missing value a priori
e.g. 95% contidence (§ = 0.05) with € = 0.01 needs k = 18445 runs



SMC: Sequential Testing

For P(¢ G) ~ x: use e.g. Wald’s sequential probability ratio test

’Md\;%:&"’% 3 SP RT

/
Input: DTMC M = (S, T,s;),GC S, x € [0,1],deN, e,a,8 €(0,1)

Output: requirement satisfaction: true, false, or unknown <
1 po:=min{x+e,1}, p; :=max{x—e¢,0}

2 a:=log((1—-p)/a), b:=log(B/(1—a))

g r:=10

4 repeat

5 v :=simulate(M, G, d)

if v = unknown then return unknown

else) if v =true then r :=r +logp,; —logp,

else r :=r +1log(1—p;)—log(1—py)

if - < b then return ~ = > // likely P(¢ G) > py > x
10 else if r > a then return ~ = < // likely P(6 G) < p; < x

O 0 NN O




SMC tfor Rewards

Expected rewards:

random variables X; are no longer binomial,
but tollow some unknown probability distribution
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SMC vs. PMC

Statistical model checking Probabilistic model checking
= random path generation = tull state space exploration
olus statistical evaluation olus numeric computation
Memory usage: Memory usage:
OM) -~ sire of D) O(see DTC)
Runtime: Runtime:
SLD"“ ’\g, N \r\ ‘P(QClS‘\OV\ &,Q?Q,VLAS on wodal
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Exercise |V

1. Let us use the Okamoto bound for SMC.

a) With kK = 10000 simulation runs and desired contidence level
1—6 = 0.9, what is the error € that we can guarantee?

b) Let 6 and € be fixed. How does k change it we halve the error,
i.e. we use €' = €/2 instead of the original €¢

2. Let us study a single coin tlip with outcomes heads and tails.

Use a real coin to estimate P(¢ {heads}) via many "simulation
runs" (= coin flips). Use the SPRT to perform only as many tlips
as necessary to determine whether P(o {heads}) > 3 with

indifference € = 0.05 and ¢ = = 0.1.
Document the steps of the SPRT algorithm as you run it.



DTMC Algorithms in Modest

Probabilistic model checking:  mcsta
Statistical model checking: modes
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