Formal Approaches to Decision-Making under Uncertainty

Lecture 1-2: Discrete-Time Markov Chains

Arnd Hartmanns
Formal Methods and Tools
UNIVERSITY OF TWENTE

Probability Theory Recap

A discrete probability distribution over a set of outcomes Ω is a function $\mu: \Omega \rightarrow[0,1]$ such that

1. $\sum_{\omega \in \Omega} \mu(\omega)=1$ and

$$
\begin{aligned}
& \varepsilon_{x}: \text { coin } \\
& \Omega=\{h, t\} \\
& \mu(h)=0.5, \mu(t)=0.5
\end{aligned}
$$

2. $\operatorname{spt}(\mu) \stackrel{\text { def }}{=}\{\omega \in \Omega \mid \mu(\omega)>0\}$ is countable.
$\operatorname{Dist}(\Omega)$ is the set of all discrete probability distributions over Ω.

Example: 6-sided die

$$
\begin{aligned}
& \Omega=\left\{1,2_{1} \ldots, 6\right\} \\
& \mu(i)=\frac{1}{6} \quad \forall i \in \Omega
\end{aligned}
$$

Geometric distr.

$$
\begin{aligned}
& \Omega=\mathbb{N} \\
& \mu(0)=0.5 \\
& \mu(1)=0.25 \\
& \mu(2)=\frac{1}{8}
\end{aligned}
$$

Probability Theory Recap

A probability space is a triple $\langle\Omega, \mathfrak{F}, P\rangle$ consisting of
a sample space Ω containing all possible outcomes, a σ-algebra $\mathscr{F} \subseteq 2^{\Omega}$ of measurable events, and a probability measure $P: \mathscr{F} \rightarrow[0,1]$ where $P(\Omega)=1$ and P is σ-additive, i.e. for any pairwise disjoint sets $S_{1}, S_{2}, \ldots \in \mathfrak{F}$, we have $P\left(\mathrm{U}_{i} S_{i}\right)=\sum_{i} P\left(S_{i}\right)$.

$$
\begin{aligned}
& l=[0,10] \\
& \tilde{J}=\{\phi,[0,0,0],[0,3,[,[0,0,1,[1,2], \ldots,(0,9), \ldots\} \\
& P(\phi)=0, P([0,00])=1, P\left([0,5)=\frac{1}{2}, P([2,3))=\frac{1}{10}\right. \\
& P\left([0,1] u[9,10)=P([8,1])+P([9,10])=\frac{1}{10}+\frac{1}{10}\right.
\end{aligned}
$$

Probability Theory Recap
A probability space is a triple $\langle\Omega, \mathfrak{F}, P\rangle \ldots$
Example: 6-sided die

$$
\begin{array}{ll}
\Omega=\{1, \ldots, 6\} & \\
F=2^{\Omega} \\
P(s)=\frac{1}{6}|s| & P\left(\{1,2,43)=\frac{1}{2}\right.
\end{array}
$$

Example: Uniform distribution over $[1,3]$
(see previous side for $\{0,10\}$)

$$
P([a, b])=\frac{b-a}{2} \quad P([1.5,2.5])=\frac{1}{2}
$$

Probability Theory Recap
Given a probability space $\langle\Omega, \mathfrak{F}, P\rangle$ and a measurable space $\langle S, \Sigma\rangle$, a random variable is a measurable function $X: \Omega \rightarrow S$.

If $S \subseteq \mathbb{R}$, then its expected value is $\mathbb{E}(X) \stackrel{\text { def }}{=} \int_{\omega} X(\omega) \mathrm{d} P(\omega)$ discrete: $\quad \sum_{\omega} P(\{\omega\}) \cdot X(\omega)$
Example: Value of coin

$$
\Omega= \begin{cases}\left\{h_{1} t\right\} & X(h)=0 \\ & x(t)=1\end{cases}
$$

Example: Distance of thrown ball

$$
\begin{aligned}
& \Omega=\left\{(x, y) \in[0,0]^{2}\right\} \\
& x_{\text {dist }}(\langle x, y))=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Markov Chains

A Markov chain from Córdoba airport to Rio Cuarto:

Markov Chains
A Markov chain from Córdoba airport to Rio Cuarto:

Markov Chains
A discrete-time Markov chain M is a triple

$$
\left\langle S, T, s_{I}\right\rangle
$$

where S is the finite set of states,

$T: S \rightarrow \operatorname{Dist}(S)$ is the transition function, and
$s_{I} \in S$ is its initial state.
T as $\hat{\text { probability matrix: }}$
A path $\pi \in \operatorname{Paths}(M)$ is a sequence

$$
s_{0} s_{1} \ldots
$$

of states such that $\forall i: T\left(s_{i}\right)\left(s_{i+1}\right)>0$.

$$
\text { ^ }\left(\begin{array}{ccccc}
0 & 0.5 & 0.5 & 0 & 0 \\
0.9 & 0 & 0 & 0.1 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\pi_{\leq n}$ is the prefix $s_{0} \ldots s_{n}$ of π of length n.

Markov Chain Probability Space
Given a path prefix $\pi_{\text {fin }}$, the cylinder set $\operatorname{cyl}\left(\pi_{f i n}\right)$ is the set of all paths starting with $\pi_{f i n}$.

Examples:

$$
\begin{aligned}
& C y(\text { COR BUS NRC })=\text { \{COR mas UNEL UNRC } \ldots \text {... } \\
& c y((C O R T a x i)=\{C O R T \text { ali UNRC ..., COR Taxi } \ddot{i} \dot{n} \ldots\} \\
& \mathrm{cy}(\text { (COR) })=\operatorname{Paths}(\mu)
\end{aligned}
$$

Markov Chain Probability Space
Let $\tilde{F}_{c y l}$ be the smallest σ-algebra containing all cylinder sets of M.

Then the probability space of M is

$$
\left\langle\operatorname{Paths}(M), \tilde{F}_{c y l}, P_{M}\right\rangle \quad P_{m}(\operatorname{cc}(\operatorname{cor} \text { Bus }))=0.5
$$

where P_{M} is defined by $P_{M}(\varnothing)=0$ and

$$
P_{M}(\operatorname{cyl}(\underbrace{s_{0} s_{1} \ldots s_{n}}))=\left\{\begin{array}{cc}
\prod_{i=0}^{n-1} T\left(s_{i}^{\text {coR }}\right)\left(s_{i+1}^{\text {Bus }}\right) & \text { if } s_{0}=s_{I} \wedge n>0 \\
1 & \text { if } s_{0}=s_{I} \wedge n=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Reachability Probabilities
The probability to reach a goal state in $G \subseteq S$

$$
\mathrm{P}(\diamond G) \text { or } \mathrm{P}\left(\otimes^{\leq b} G\right)
$$

is now easily defined as

$$
\begin{aligned}
& \mathrm{P}(\diamond G)=P_{M}\left(\left\{s_{0} s_{1} \ldots \in \operatorname{Paths}(M) \mid \exists i: s_{i} \in G\right\}\right) \\
& \quad \mathrm{P}(\diamond\{u v r e c s)=0.5 \cdot 0.5+0.5 \cdot 0.1+0.5 \cdot 0.950 .5 \cdot 0.5+\ldots \quad P(\triangleright\{B u s\})=0.5 \\
& \text { and } \mathrm{P}\left({ }^{\circ} \leq b G\right)=P_{M}\left(\left\{s_{0} s_{1} \ldots \in \operatorname{Paths}(M) \mid \exists i \leq b: s_{i} \in G\right\}\right)
\end{aligned}
$$

Rewards and Costs
Buses and taxis aren't free.

\rightarrow reward function $R: S \times S \rightarrow \mathbb{R}$

Rewards and Costs
The accumulated reward to reach a goal state in $G \subseteq S$ is

$$
\begin{aligned}
& r e w_{\triangleright G}^{M}\left(s_{0} s_{1} \ldots\right) \\
& \stackrel{\text { def }}{=}\left\{\begin{array}{c}
\sum_{i=0}^{j} R\left(s_{i}, s_{i+1}\right) \\
\infty
\end{array}\right.
\end{aligned}
$$

if $\exists j: s_{j} \in G \wedge \forall k<j: s_{k} \notin G$ otherwise

Example:

$$
\text { Kew ounces }(\text { COR Bus COR Bus UNRC ...) })=4
$$

\rightarrow this is (almost) a random variable!

Expected Rewards
The expected accumulated reward to reach a goal state in $G \subseteq S$ is

$$
\begin{aligned}
& \mathrm{R}(\diamond G) \\
& \stackrel{\text { def }}{=} \mathbb{E}\left(r e w_{\bullet G}^{M}\right)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& R(\Delta\{\text { Bus }, \text { Taxi }\})=0.5 \cdot 2+0.5 \cdot 8=5 \\
& R(\Delta\{\text { Bus }\})=\infty
\end{aligned}
$$

Markov Chain Modelling
Have: Coin that we can flip
Want: \quad Play a game that requires 6 -sided die
Claim: Can simulate die with coin as follows:

