Formal Approaches to Decision-Making under Uncertainty

Lecture 1-2: Discrete-Time Markov Chains

Arnd Hartmanns

Formal Methods and Tools UNIVERSITY OF TWENTE

A discrete probability distribution over a set of outcomes Ω is a function $\mu: \Omega \to [0,1]$ such that $1. \sum_{\omega \in \Omega} \mu(\omega) = 1$ and $2. \operatorname{spt}(\mu) \stackrel{\text{def}}{=} \{\omega \in \Omega \mid \mu(\omega) > 0\}$ is countable.

 $Dist(\Omega)$ is the set of all discrete probability distributions over Ω .

Example: 6-sided die

L~ {1, 2, ...,6} $\mu(i) = \frac{1}{6} \forall i \in \mathcal{R}$

Geometric distr. $\int L = IN$ $\mu(0) = 0.5$ $\mu(1) = 0.25$ $\mu(2) = \frac{1}{8}$

_r p A probability space is a triple $\langle \Omega, \mathfrak{F}, P \rangle$ consisting of a sample space Ω containing all possible **outcomes**, a σ -algebra $\mathfrak{F} \subseteq 2^{\Omega}$ of measurable events, and a probability measure $P: \mathfrak{F} \to [0, 1]$ where $P(\Omega) = 1$ and P is σ -additive, i.e. for any pairwise disjoint sets $S_1, S_2, \dots \in \mathfrak{F}_r$ we have $P(\bigcup_i S_i) = \sum_i P(S_i)$. L=[0,10] $\mathcal{F} = \{ \phi, [0, 10], [0, 1], [0, 0.1], [1, 2], ..., (0, 9), ... \}$ $P(\phi) = 0$, P([0,10]) = 1, $P([0,5]) = \frac{1}{2}$, $R([2,2]) = \frac{1}{2}$ $P([0,1] \cup [9,10]) = P([0,1]) + P([9,10]) = 1 + 1$

A probability space is a triple $\langle \Omega, \mathfrak{F}, P \rangle$...

Example: 6-sided die

$$\Omega = \{1, ..., 6\}$$

 $F = 2^{\Omega}$
 $P(S) = \{1, ..., 6\}$

$$P(\{1,2,43\}) = \frac{1}{2}$$

Example: Uniform distribution over [1,3]

(see previous slide for [0, 10]) $P([a, b]) = \frac{b-a}{2}$ $P([1.5, 2.5]) = \frac{1}{2}$

Given a probability space $\langle \Omega, \mathfrak{F}, P \rangle$ and a measurable space $\langle S, \Sigma \rangle$, a **random variable** is a measurable function $X: \Omega \to S$.

If $S \subseteq \mathbb{R}$, then its expected value is $\mathbb{E}(X) \stackrel{\text{def}}{=} \int_{\omega} X(\omega) \, \mathrm{d}P(\omega)$ *discrete:* $\mathcal{E}_{\omega} \, \mathcal{P}(\mathcal{E}_{\omega}) \cdot \chi(\omega)$ Example: Value of coin

> $S = \{h, t\} = 0$ X(t) = 0X(t) = 1

Example: Distance of thrown ball

 $\Omega = \{(x,y) \in [0,10]^{2}\}$ $X_{dist}((x,y)) = \sqrt{x^{2}+y^{2}}$

Markov Chains

A Markov chain from Córdoba airport to Rio Cuarto:

Markov Chains

A Markov chain from Córdoba airport to Rio Cuarto:

Markov Chains

 $\frac{0.3}{0.5}$ $\frac{0.5}{1}$ $\frac{0.5}{0.5}$ $\frac{0.5}{0.5}$

 $T \text{ as probability matrix:} \begin{pmatrix} 0 & 0.5 & 0.5 & 0 & 0 \\ 0.9 & 0 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Markov Chain Probability Space

Given a path prefix π_{fin} , the cylinder set $cyl(\pi_{fin})$ is the set of all paths starting with π_{fin} .

Examples:

$$Cyl(cor Bus UNRC) = \{ cor Bus UNRL UNRC ... \}$$

 $Cyl((cor Taxi) = \{ cor Taxi UNRC ..., cor Taxi ii ... \}$
 $Cyl((cor) = Pattes(M)$

Markov Chain Probability Space

Let \mathfrak{F}_{Cvl} be the smallest σ -algebra containing all cylinder sets of M.

Then the probability space of M is $\langle \text{Paths}(M), \mathfrak{F}_{CVl}, P_M \rangle \qquad \mathcal{P}_{M}(\operatorname{cr}(\operatorname{cor} \operatorname{Bus})) = 0.5$

where P_M is defined by $P_M(\emptyset) = 0$ and $P_{M}(cyl(s_{0} s_{1} \dots s_{n})) = \begin{cases} \prod_{i=0}^{n-1} T(s_{i})(s_{i+1}) & \text{if } s_{0} = s_{I} \land n > 0\\ 1 & \text{if } s_{0} = s_{I} \land n = 0\\ 0 & \text{otherwise} \end{cases}$ otherwise

Reachability Probabilities

The probability to reach a goal state in $G \subseteq S$ P($\diamond G$) or P($\diamond^{\leq b} G$)

is now easily defined as

 $P(\diamond G) = P_M(\{s_0 \ s_1 \ \dots \in \text{Paths}(M) \mid \exists i: s_i \in G\})$ $P(\diamond \{\text{UNRG}\}) = 0.5 \cdot 0.5 + 0.5 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.5 + \dots, P(\diamond \{\text{Bus}\}) = 0.5$

and $P(\diamond^{\leq b} G) = P_M(\{s_0 \ s_1 \dots \in Paths(M) \mid \exists i \leq b : s_i \in G\})$

Rewards and Costs

Buses and taxis aren't free.

 \rightarrow reward function $R: S \times S \rightarrow \mathbb{R}$

Rewards and Costs

Example:

 \rightarrow this is (almost) a random variable!

Expected Rewards

The **expected accumulated reward** to reach a goal state in $G \subseteq S$ is $R(\diamond G)$ $\stackrel{\text{def}}{=} \mathbb{E}(rew^M_{\diamond G})$

Examples:

 $R(Q \{Bus, Taxi\}) = 0.5 \cdot 2 + 0.5 \cdot 8 = 5$ $R(Q \{Bus\}) = 00$

Markov Chain Modelling

- Have: Coin that we can flip
- Want: Play a game that requires 6-sided die
- Claim: Can simulate die with coin as follows:

